

This document is intended to show the connections to the Standards of Mathematical Practices for the content standards and to get detailed information at each level . Resources used: CCSS, Arizona DOE, Ohio DOE DQG 1RUWK & DUROLQD '2(7KLV ³)OLS % RRN´LV LQWHQG understand what each standard means in terms of what students must know and be able to do. It provides only a sample of instructional strategies and examples. The goal of every teacher should be to guide students in understanding & making sense of mathematics. 1. Make sense of problems and persevere in solving them.

7KH\ PD\ FKHFN WKHLU WKLQNLQJ E\ DVNLQJ WKHPVHOYHV 3'RHV W

- 2. Reason abstractly and quantitatively.
- 3. Construct viable arguments and critique the reasoning of others.

PDWKHPDWLFDO GLVFXVVLRQV LQYROYLQJ TXHVWLRQV OLNH ³+RZ GLG \RX 7KH\ H[SODLQ WKHLU WKLQNLQJ WR RWKHUV DQG UHVSRQG WR RWKHUV¶ V 4. Model with mathematics.

- 5. Use appropriate to ols strategically.
- 6. Attend to precision.

Summary of Standards for Mathematical Practic	Questionsto Develop MathematicalThinking
 Make sense of problems and persevere in solving the Interpret and make meaning of the probleto find a starting point. Analyze what is given in order to explain to themselve meaning of the problem. Plan a solution pathway instead of jumping to a solution. Monitor their progress and change the approach if necessary. See relationships between various representations. Relate current situations to concepts or skills previously learned and connect mathematical ideas to one another. Continually ask themselik. O #fi (Lt' ! ~Žfi' fi'' fi-1 Can understand various approaches to solutions. 	How would you describe the problem in your own words? How would you describe what you are trying to find? What do you notice about? What informationis given in the problem? Describe the elationship between the quantities. Describe what you have already tried. What might you change $\tilde{Z}! fi(\pounds) fit (fis', #) / fi) ' fi'$ to this point. What steps in the process are you most confident about? What are some other strategies you might try? What are some other problems that are sign ito this one? How might you use one of your previous problems to help you begin? How else might you organizerepresent show

2. Reason abstractly and quantitatively

- Make sense of quantities and their relationships.
- Decontextualize (represent a sitf(z)-2(e)(o)-3()-2(08b3(g t)-3()

Summary of Standards for Mathematical Practice

Operations and Algebraic Thinking (OA)		
3.OA.1	×	
	For example, describe	a context in which
a total number of objects can be expressed as 5 × 7	-	
Standards for Mathematical Practices to be emphasized	d:	

Instructional Strategies (3.OA.1 - 4)

÷□ × TXHVWLRQV VXFK DV ³+RZ PDQ\ V DUH LQ "´RU ³ WLPHV ZKDW QX

×

Instructional Resources/Tools

Operations and	Algebraic Thinking (OA)

3.OA.2.

Operations and Algebraic Thinking (OA)

3.OA.3.

Standards for Mathematical Practices to be emphasized:

Connections

Explanations and Examples:

 $(4 \times 9 = 36, 36 \div 6 = 6).$

Examples of division problems:

х

0

Х

0

Starting	Day	Day	Day	Day	Day	Day
	1	2	3	4	5	6

Operations	and Algebraic Thinking (OA)
: 3.OA.4. of the equations 8 \times ?	For example, determine t he unknown number that makes the equation true in each $= 48, 5 = \div 3, 6 \times 6 = ?$.
	matical Practices to be emphasized:
Connections	
Explanations and Exa	amples:
÷	
÷	÷ fact families
inverse relationshi	q
	J RI WKH PHDQLQJ RI WKH HTXDO VLJQ DV ´
t	
‡	
+	
Example	
_	
÷	
	m
unknowns in equations equations. When crafti asked and answered to	Ily connected to 3.AO.3 when students solve problems and determine S. Students should also experience creating story problems for given ng story problems, they should carefully consider the question(s) to be o write an appropriate equation. Students may approach the same story d write either a multiplication equation or division equation.

6WXGHQWV DSSO\ WKHLU XQGHUVWDQGLQJ RI WKH PHDQLQJ RI WKH HTX[

- х
- х
- х
- ...

Operations and Algebraic Thinking (OA)

3.OA.5.

Examples: If $6 \times 4 = 24$ is known, then $4 \times 6 = 24$ is also known.(Commutative property of multiplication.) $3 \times 5 \times 2$ can be found by $3 \times 5 = 15$, then $15 \times 2 = 30$, or by $5 \times 2 = 10$, then $3 \times 10 = 30$. (Associative property of multiplication.) Knowing that $8 \times 5 = 40$ and $8 \times 2 = 16$, one can find 8×7 as $8 \times (5 + 2) = (8 \times 5) + (8 \times 2) = 40 + 16 = 56$. (Distributive property.)

Standards for Mathematical Practices to be emphasized:

Connections (3.OA. 5-6)

understanding of multipl

Developing i cation and division and strategies for multiplication and

KH\ NQRZ WR VROYH SURGXFWV WKH\ GRQ¶

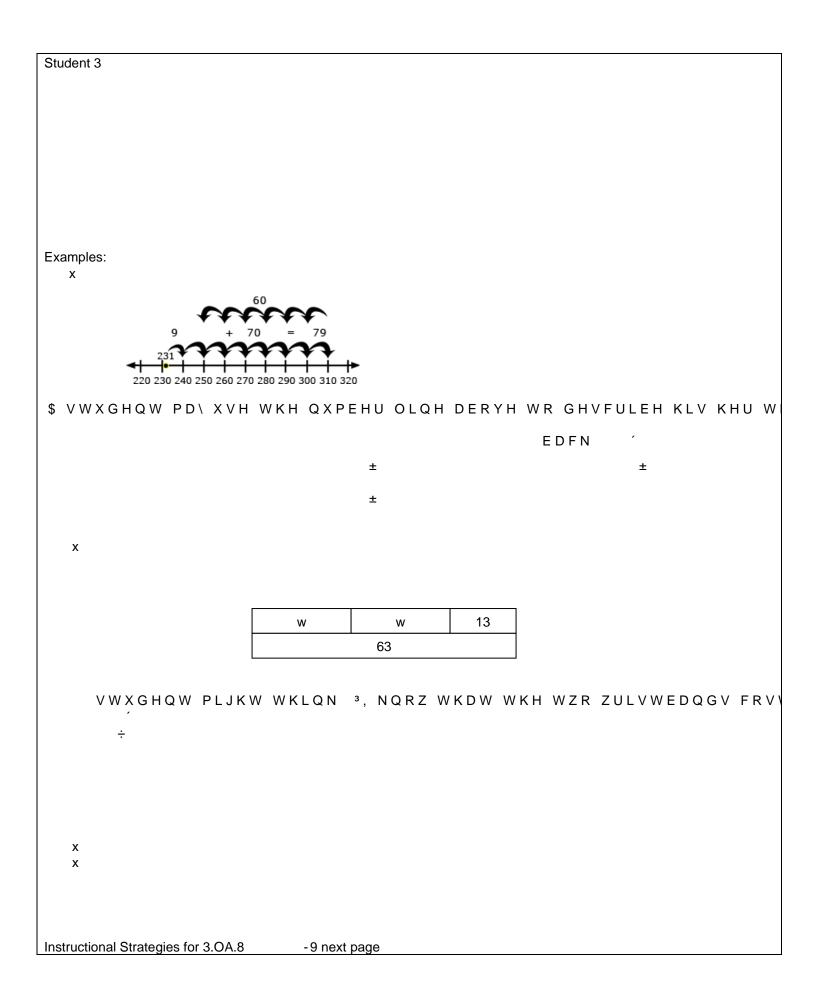
Operations and Algebraic Thinking (OA)

3.OA.6.

For example, find $32 \div 8$ by

finding the number that makes 32 when multiplied by 8.

Standards for Mathematical Practices to be emphasized:


Operations and Algebraic Thinking	(OA)
3.OA.7.	
	×
÷	
Standards for Mathematical Practices to be en	nphasized:
<u>Connections</u>	
	Developing understanding of
multiplication and division and strategies for multiplicati	ion and division within 100
Explanations and Examples:	
	using a reasonable
amount of steps and time	
³ .QRZIURP PHPRUhót	

Instructional Strategies :

This is called unitizing

Operations and Algebraic Thinking (OA)

3.OA.8

Instructional Strategies : (3.OA.8 - 9)

Operations	and Algeb	oraic Thin	king (OA)
oporationo	ana / ugos		

3.OA.9.

For example, observe that 4 times a number is why 4 times a number can be decomposed into two equal addends. always even, and explain

Standards for Mathematical Practices to be emphasized:

Connections

‡

‡ ‡

‡

Explanations and Examples:

When (commutative property) one changes the order of the factors they will still gets the same product, example $6 \times 5 = 30$ and $5 \times 6 = 30$.

Example

‡ ‡ ‡ ‡ ‡ ‡

‡

÷

Addend	Addend	Sum

Third Grade **Operations and Algebraic Thinking Extended Common Core State Standards** Mathematics The Alternate Achievement Standards for Students With the Most Significant Cognitive Disabilities Non - Regulatory Guidance states, ³ « PDWHULDOV VKRXOG VKRZ DtheFcOnttleDtUstaOdlarOsNiorWheR grade in which the student is enrolled, although the grade - level content may be reduced in complexity or modified to reflect pre - UHTXLVLWH VNLOOV Throughout the Standards descriptors such as, describe, count, identify, etc, should be interpreted to mean that the students will be taught and tested according to their mode of communication

North Carolina DOE

	Third Grade Mathematics Operations and Algebraic Thinking (3.OA)					
	Common Core State Standards	Essence	Extended Common Core			
	Operations a Common Core State Standards resent and solve problems involving iplication and division 1. Interpret products of whole numbers, e.g., interpret 5 × 7 as the total number of objects in 5 groups of 7 objects eacFor example, describe a context in which a total number of objects can be expressed as 5 × 7. 2. Interpret wholenumber quotients ofwhole numbers, e.g., interpret 56 ÷ 8 as the number of objects in each share when 56 objects are partitioned equally into 8 shares, or as a number shares when 56 objects are partitioned into equa shares of 8 objects eacFor example, describe a context in which a number of shares or a number groups can be expressed as 56 ÷ 8. 3. Use multiplication and division within 100 to solve word problems in situations involving equal groups, arrays, and measurement quantities, e.g. by using drawings and eqtians with a symbol for	nd Algebraic	Thinking (3.OA)			
Clus	the unknown number to represent the problem. 4. Determine the unknown whole number in a multiplication or division equation relating three whole numbersFor example, determine the unknown number that makes the equation true in eachof the equations $8 \times ? = 48$, $5 \div 3$, $6 \times 6 = ?$		Clus			

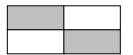
Understand properties of multiplication and the relationship between multiplication and division	Build foundation	Represent repeated addition
5. Apply properties of operations as strategie to multiply and divide. \pounds xamples: If $6 \times 4 = 24$ is known, then $4 \times 6 = 24$ is also known. (Commutative property of multiplication.) 3×2 $\times 2$ can be found by $3 \times 5 = 15$, then $15 \times 2 = 30$, or by $5 \times 2 = 10$, then $3 \times 10 = 30$. (Associative property of multiplication.) Knowing that $8 \times 5 = 40$ and $8 \times 2 = 16$, one of find 8×7 as $8 \times (5 + 2) = (8 \times 5) + (8 \times 2) = -16 = 56$. (Distributive property.) 6. Understand division as an unknowfarctor problem. For example, find $32 \div 8$ by finding the number that makes 32 when multiplied b 8.	multiplicatio n through repeated addition	3. Build many present repeated addition. (i.e., 2grou 4. Share e 2 to 4 peop 2 to 4 peop 2 to 4 peop 2 to 4 peop

Instructional Strategies

Prior to implementing rules for rounding students need to have opportunities to investigate place value. A strong understanding of place value is essential for the developed number sense and the subsequent work that involves rounding numbers.

Building on previous understandings of the place value of digits in multi-digit numbers, place value is used to round whole numbers. Dependence on learning rules can be eliminated with strategies such as the use of a number line to determine ZKLFK PXOWLSOH RI RU RI D QXPEHU LV QHDUHVW RU PRUH URXQ understanding of place value increases, the strategies for rounding are valuable for estimating, justifying and predicting the reasonableness of solutions in problem-solving.

Strategies used to add and subtract two-digit numbers are now applied to fluently add and subtract whole numbers within


Number and Operations in Bas e Ten (NBT)

Example:

- х
- х
- х
- Х

Third Grade Number and Operations Ex tended Common Core State Standards	in Base Ten Mathematics
The Alternate Achievement Standards for Students With the Mos	st
Significant Cognitive Disabilities Non - Regulatory Guida	ance states,
³ « PDWHULDOV VKRXOG VKRZ D FOHDU	OLQN WR WKH FRQWHQV
grade in which the student is enrolled, although the grade	-level content
may be reduced in complexity or modified to reflect pre	- UHTXLVLWH VNLOOV
Throughout the Standards descriptors such as, describe, count, i	identify,
etc, should be interpreted to mean that the students will be taugh	nt and
tested according to th eir mode of communication	
North Carolina	

Number and Operations ² Fractions (NF)		
3.NF.1. b b a b	а	b
Standards for Mathematical Practices to be emphasized:		
Connections (3.NF.1 - 3)		
Explanations and Example s:		
		Set models
x		
‡ ‡		
о О		
‡ ‡		
o ³ / ₄ o one fourth, two fourths, three fourths.		
3 ′		

Common Misconceptions: (3.NF.1)

Number and Operations	² Fractions (NF)		
3.NF.2.			
b b	b	b	
a b		а	

 $\frac{1}{8}$

 $\frac{1}{2}$

1⁄2

	Third Grade	Mathematics	
Extended Commo	on Core State S	tandards	Mathematics

3.MD.1.

Standards for Mathematical Practices to be emphasized:

3.MD.2.

Measurement and Data (MD)))	
3.MD.3.		
	VWHS 3KRZ PDQ\ PRUH' DQG 3KRZ PDQ\ OF	
	For example, draw a bar graph in which each square in the	ie bar
graph might represent 5 pets.		
Standards for Mathematical Practices	s to be emphasized:	
Connections (3.MD.3 - 4)		
	Developing understanding of	
fractions, especially unit fractions(fractions w		olving
multi - step problems	, , , , , , , , , , , , , , , , , , , ,	5
	±	
	±	
±		
	±	
Explanations and Examples:		

‡ +RZ PDQ\ PRUH QRQILFWLRQ ERRNV ZKHUH UHDG WKDQ IDQWDV\ ‡ 'LG PRUH SHRSOH UHDG ELRJUDSK\ DQG P\VWHU\ ERRNV RU ILFW ‡ \$ERXW KRZ PDQ\ ERRNV LQ DOO JHQUHV ZHUH UHDG" ‡ 8VLQJ WKH * *KDW - OWHUNDO ZDV XVHO IDH WKLV VEDOU"

‡ :KDW LQWHUYDO ZDV XVHG IRU WKLV VFDOH" ‡ :KDW FDQ ZH VD\ DERXW W\SHV RI ERRNV UHDG" :KDW LV D W\SL ‡ ,I \RX ZHUH WR S

Instructional Strategies : (3.MD.3 - 4)

Measurement and Data (MD)
3.MD.4.
2
Standards for Mathematical Practices to be emphasized:
Connections
Explanations and Examples:

 $\forall \ \forall \ \mathsf{WHPV} \quad , \\ \mathsf{W}\P \forall \ \mathsf{LPSRUWDQW} \ \mathsf{WR} \ \mathsf{UHYLHZ} \ \mathsf{ZLWK} \ \mathsf{VWXGHQWV} \ \mathsf{KRZ} \ \mathsf{WR} \\$

3.MD.5.

\$ VTXDUH ZLWK VLGH OHQJWK XQLW FDOOHG 3D XQLW VTXDU

n

n Standards for Mathematical Practices to be emphasized:

3.MD.6.

Standards for Mathematical Practices to be emphasized:

Measurement and Data (MD)	
3.MD.7	
bc a×b a×c	а
Standards for Mathematical Practices to be emphasized:	

7KLV VWDQGDUG H[WHQGV VWXGHQWV¶ ZRUN ZLWK WKH GLVWULE

3.MD.8.

:

n

n

Common Misconceptions:

Third Grade M	lathematics		
Extended Common Core State Sta	ndards	Mathematics	
The Alternate Achievement Standards for Students V			
Cognitive Disabilities Non - Regulatory Guidance	e VWDWHV	³ « PDWHULDOV V	/ K R X O (
clear link to the content standards for the grade in whi	ch the student is enrol	led,	
although the grade -level content may be reduce reflect pre - UHTXLVLWH VNLOOV			

Geometry	(G)

Reason with shapes and their attributes.

3.G.1

Example

	Third Grade Math	ematics		
Extended Con	nmon Core State Standa	rds N	<i>Mathematics</i>	
The Alternate Achievemer	nt Standards for Students With t	he Most Significan	t	
Cognitive Disabilities Non	- Regulatory Guidance	VWDWHV	³ « P D W H U L D O V	VKRXOO
clear link to the content sta	ndards for the grade in which th	e student is enrolle	ed,	
although the grade	val contant may be reduced in	oomolovity or modi	fied to	

although the grade - level content may be reduced in complexity or modified to reflect pre -

TABLE1. Common addition and subtraction situations.

³⁴Adapted from Box420fMathematics Learning in Early ChiloHational Research Council (2009, pp. 32, 33). ³⁵Thesetake aparituations can be used to show all the decompositions of a given number. The associated equations, wehield to a view to show all the decompositions of a given number. The associated equations, wehield to a view to show all the decompositions of a given number. The associated equations, wehield to a view to show all the decompositions of a given number. The associated equations, we hield to a view to show all the decompositions of a given number. The associated equations, we hield to a view to show all the decompositions of a given number. The associated equations, we hield to a view to show all the decompositions of a given number. The associated equations, we hield the view to a view to show all the decompositions of a given number. The associated equations, we hield the view to a view to show all the decompositions of a given number. The associated equations, we hield the view to a view of the view to a view